1,863 research outputs found

    Phase diagram of asymmetric Fermi gas across Feshbach resonance

    Full text link
    We study the phase diagram of the dilute two-component Fermi gas at zero temperature as a function of the polarization and coupling strength. We map out the detailed phase separations between superfluid and normal states near the Feshbach resonance. We show that there are three different coexistence of superfluid and normal phases corresponding to phase separated states between: (I) the partially polarized superfluid and the fully polarized normal phases, (II) the unpolarized superfluid and the fully polarized normal phases and (III) the unpolarized superfluid and the partially polarized normal phases from strong-coupling BEC side to weak-coupling BCS side. For pairing between two species, we found this phase separation regime gets wider and moves toward the BEC side for the majority species are heavier but shifts to BCS side and becomes narrow if they are lighter.Comment: 4 pages, 3 figures. Submitted to LT25 on June 200

    Far infrared maser communications technology

    Get PDF
    An optically pumped FIR laser was constructed and tested. Optimum operating conditions were determined with CH3OH as the lasing medium. The laser was found to operate equally well with flowing gas or in a sealed off configuration. The FIR cavity stability and pump laser stability were found to have significant problems. The absorption coefficient per unit pressure of 1-1 difluoroethylene at the P(22) and P(24) lines of the 10.4 micron CO2 band was measured. The FIR line pumped by P(22) occurs at approximately 890 microns, which may be in an atmospheric transmission window. It was found that significant Stark tuning of absorption lines of methanol and 1-1 difluoroethylene can be accomplished, even at the usual 100 to 300 mTorr operating pressures of FIR lasers. This means that the use of Stark tuning may enable more effective use of pump laser output

    Application of NASTRAN for stress analysis of left ventricle of the heart

    Get PDF
    Knowing the stress and strain distributions in the left ventricular wall of the heart is a prerequisite for the determination of the muscle elasticity and contractility in the process of assessing the functional status of the heart. NASTRAN was applied for the calculation of these stresses and strains and to help in verifying the results obtained by the computer program FEAMPS which was specifically designed for the plane-strain finite-element analysis of the left ventricular cross sections. Adopted for the analysis are the true shape and dimensions of the cross sections reconstructed from multiplanar X-ray views of a left ventricle which was surgically isolated from a dog's heart but metabolically supported to sustain its beating. A preprocessor was prepared to accommodate both FEAMPS and NASTRAN, and it has also facilitated the application of both the triangular element and isoparameteric quadrilateral element versions of NASTRAN. The stresses in several crucial regions of the left ventricular wall calculated by these two independently developed computer programs are found to be in good agreement. Such confirmation of the results is essential in the development of a method which assesses the heart performance

    Investigation of new concepts of adaptive devices Quarterly technical report, 15 Jun. - 14 Sep. 1967

    Get PDF
    Insulated gate field effect transistor with adaptive and memory characteristic

    Phase diagram of a dilute fermion gas with density imbalance

    Full text link
    We map out the phase diagram of a dilute two-component atomic fermion gas with unequal populations and masses under a Feshbach resonance. As in the case of equal masses, no uniform phase is stable for an intermediate coupling regime. For majority component heavier, the unstable region moves towards the BEC side. When the coupling strength is increased from the normal phase, there is an increased parameter space where the transition is into the FFLO state. The converse is true if the majority is light.Comment: Proceeding for M2^2S-HTSC VIII meeting, July 9-14 2006, Dresden; To appear in Physica

    Superconducting instability in the Holstein-Hubbard model: A numerical renormalization group study

    Full text link
    We have studied the d-wave pairing-instability in the two-dimensional Holstein-Hubbard model at the level of a full fluctuation exchange approximation which treats both Coulomb and electron-phonon (EP) interaction diagrammatically on an equal footing. A generalized numerical renormalization group technique has been developed to solve the resulting self-consistent field equations. The dd-wave superconducting phase diagram shows an optimal T_c at electron concentration ~ 0.9 for the purely electronic Hubbard system. The EP interaction suppresses the d-wave T_c which drops to zero when the phonon-mediated on-site attraction UpU_p becomes comparable to the on-site Coulomb repulsion UU. The isotope exponent α\alpha is negative in this model and small compared to the classical BCS value αBCS=1/2\alpha_{BCS} = 1/2 or compared to typical observed values in non-optimally doped cuprate superconductors.Comment: 4 pages RevTeX + 3 PS figures include

    Theory for Superconducting Properties of the Cuprates: Doping Dependence of the Electronic Excitations and Shadow States

    Full text link
    The superconducting phase of the 2D one-band Hubbard model is studied within the FLEX approximation and by using an Eliashberg theory. We investigate the doping dependence of TcT_c, of the gap function Δ(k,ω)\Delta ({\bf k},\omega) and of the effective pairing interaction. Thus we find that TcT_c becomes maximal for 13  %13 \; \% doping. In {\it overdoped} systems TcT_c decreases due to the weakening of the antiferromagnetic correlations, while in the {\it underdoped} systems due to the decreasing quasi particle lifetimes. Furthermore, we find {\it shadow states} below TcT_c which affect the electronic excitation spectrum and lead to fine structure in photoemission experiments.Comment: 10 pages (REVTeX) with 5 figures (Postscript

    Magnetohydrodynamic boundary layer between parallel streams of different magnetic fields and temperatures

    Get PDF
    Free laminar boundary layer flow between parallel streams of different magnetic fields and temperatures for incompressible, viscous, thermal, and electric conducting fluid
    • …
    corecore